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Abstract 

This study draws upon social cognitive career theory and higher education literature to propose 

and test a conceptual framework for understanding the selection of postsecondary STEM fields 

of study by recent high school graduates who attend four-year institutions. Results suggest that 

high school math achievement, exposure to math and science courses, and math self-efficacy 

beliefs all affect students’ intent to major in STEM fields, which in turn influences entrance into 

STEM majors. Entrance into STEM majors also is directly influenced by students’ high school 

math achievement, graduate degree aspirations, and initial postsecondary experiences, such as 

academic interaction, and financial aid receipt. Multiple-group structural equation modeling 

analyses based on gender, race, and socioeconomic status indicate that the proposed theoretical 

model fits the data well; however, the effects of high school math achievement and exposure to 

math and science on students’ intent to major in STEM fields differ significantly among racial-

ethnic groups.  
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Introduction 

Without question, America’s ability to maintain its global competitiveness within science, 

technology, engineering, and mathematics (STEM) fields is an issue of national importance. 

Often framed in the context of human capital (National Science Board, 2010), discussions of the 

critical issues facing the nation’s STEM infrastructure center on a recognized need for building 

STEM workforce capacity (National Academies 2005 "Rising Above the Gathering Storm" 

Committee, 2010). Support for this cause has been levied through investments in educational 

programming, many of which are focused on postsecondary education.  

The demand for graduates in STEM fields continues to grow at a relatively rapid rate. 

According to the National Science Foundation (2010), the employment rate in science and 

engineering fields rose an average of 3.3% annually between 2004 and 2008 compared to an 

average 1.3% annual increase in employment in all occupations. This estimated growth ratio is 

consistent with long-term national trends but trails international increases (U.S. Department of 

Labor, 2007). Meanwhile, the national demand for motivated high school graduates to enter 

postsecondary STEM fields is at its highest, but high school seniors’ interest in and readiness for 

STEM fields have been declining (ACT, 2006). American postsecondary institutions are 

therefore facing an unprecedented need to increase the number of students who study in STEM 

disciplines.  

Although these rising calls have generated a fair amount of empirical interest, most research 

centers on persistence and attainment among students who have already entered the STEM fields. 

Not as much empirical attention has been paid to factors relevant to interest in, and entrance into, 

STEM fields, which are arguably the first critical steps into the STEM pipeline. Given the 

pressing national concerns facing STEM education, it is pivotal to provide rigorous academic 
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programs and support mechanisms that prepare students to enter these challenging and important 

fields of postsecondary study. Needless to say, this educational endeavor will rely on collective, 

concerted, and well-informed efforts by the nation’s secondary schools and postsecondary 

institutions. As such, theoretically based work from a K-16 perspective is needed to better 

understand boosters and barriers to students’ entrance into STEM fields of study. Towards that 

end, this study proposes and tests a theoretical model of STEM participation that examines 

factors shaping the decision to pursue STEM fields of study, using a nationally representative 

sample of high school graduates from 2004. Particular attention also is given to the potentially 

varying effects of high school and postsecondary factors by utilizing multiple-group structural 

equation modeling analyses based on gender, race, and socioeconomic status (SES). 

 

Background Literature and Theoretical Framework 

Research on STEM Education 

STEM education has garnered close scholarly attention. Numerous studies have revealed the 

disproportionally high attrition rates for women and minorities and the bachelor’s degree 

completion gap in STEM disciplines at four-year institutions across the nation (e.g., Anderson & 

Kim, 2006; Higher Education Research Institute, 2010; Hilton & Lee, 1988; Huang & Brainard, 

2001; Huang, Taddese, & Walter, 2000; Hughes, 2000; Seymour & Hewitt, 1997; Wyer, 2003). 

In addition to the gender and racial disparities in STEM persistence and completion, researchers 

also have highlighted theoretical reasons that students persist or leave a STEM field of study, 

such as early exposure to and proficiency in math and science (Adelman 1998, 1999, 2006; 

Anderson & Kim, 2006; Hagedorn & DuBray, 2010); high school curriculum (Elliott, Strenta, 

Adair, Matier, & Scott, 1996); advanced courses in math and science (Ellington, 2006); 
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information early in the career search process (Holland, 1992); the types of opportunities, 

experiences, and support students receive in college (e.g., Chang, Sharkness, Newman, & 

Hurtado, 2010; Seymour & Hewitt 1997; Shuman, Delaney, Scalise, Wolfe, & Besterfield-Sacre, 

1999); institutional selectivity (Chang, Cerna, Han, & Sáenz, 2008; Eagan, 2009); faculty quality 

and diversity (Brainard, Metz, & Gillmore, 1993; Leach, 2010); and classroom experiences 

(Cabrera, Colbeck, & Terenzini, 2001).  

Despite the wealth of research on persistence and completion in STEM fields, less focus has 

been given to entrance into a postsecondary STEM discipline. Existing research does reveal that 

the choice to pursue STEM fields is affected by math- and science-related interest and self-

assessment (Halpern, Benbow, Geary, Gur, Hyde, & Gernsbacher, 2007; Marsh, Trautwein, 

Lüdtke, Köller, & Baumert, 2005; Seymour & Hewitt, 1997), math and science completed during 

high school (e.g., Ethington & Wolfle, 1988; Maple & Stage, 1991), social background (Ware & 

Lee, 1988), and parental education (Gruca, Ethington, & Pascarella, 1988). The most 

comprehensive national study to date on students who enter STEM was conducted by Chen and 

Weko (2009). Utilizing three Institute of Education Sciences (IES) longitudinal datasets, the 

authors found that the percentage of students entering STEM fields was higher among male 

students; younger and dependent students; Asian/Pacific Islander students; foreign students, or 

those who spoke a language other than English as a child; and students with more advantaged 

family background characteristics and stronger academic preparation than their counterparts. 

However, given the descriptive nature of the study, factors influencing STEM entrance beyond 

demographics were barely examined. Another recent study (Crisp, Nora, & Taggart, 2009) found 

that students’ decisions to declare a STEM major and earn a STEM degree at a Hispanic-serving 

institution were uniquely influenced by their gender, ethnicity, SAT math score, and high school 
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class rank percentile. Despite these commendable empirical efforts, relatively less is known 

about why students enter STEM fields. 

Overall, the state of research on STEM education represents substantial efforts by 

researchers to form a better understanding of the underlying factors that influence student 

success along the STEM pipeline. However, too few studies, especially those using nationally 

representative samples, have focused on understanding entrance into STEM fields of study. The 

boosters and barriers to students choosing STEM majors are unclear. As a result, knowledge is 

scant on how to broaden STEM participation, which is essentially the first critical step toward 

building a viable STEM pipeline. This study addresses these limitations by focusing on entrance 

into STEM fields and identifying the characteristics and factors associated with student decision 

to pursue STEM majors in four-year institutions.  

 

Theoretical Framework 

Utilizing a longitudinal, nationally representative sample, this study proposes a conceptual 

framework for understanding the decision to choose postsecondary STEM fields of study among 

recent high school graduates. Integrating prior literature and the Social Cognitive Career Theory 

(SCCT), the theoretical model hypothesizes that students’ high school exposure to math and 

science courses, math self-efficacy beliefs, and high school math achievement influence their 

intent to major in STEM fields, which in turn affects their actual choice of STEM fields of study. 

In addition, the model theorizes that entrance into STEM fields also is directly influenced by 

students’ high school math achievement and initial postsecondary experience. This theoretical 

model is depicted in the following graphic representation.  
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[Insert Figure 1 about here.] 

 

Based on Bandura’s (1986) general social cognitive theory, SCCT underscores the 

interrelationship among individual, environmental, and behavioral variables that are assumed to 

undergird academic and career choice (Lent & Brown, 2006). Key factors in SCCT include self-

efficacy beliefs, outcome expectations, interests, environmental support and barriers, as well as 

choice actions (Lent, Sheu, Gloster, & Wilkins, 2010). SCCT offers an appropriate theoretical 

lens to study the issue of STEM choice (Lent, Brown, & Hackett, 1994, 2000) and has been 

applied in a small number of studies on STEM-related academic choice intentions (e.g., Betz & 

Hackett, 1983; Fouad & Smith, 1996; Gainor & Lent, 1998; Hackett, Betz, Casas, & Rocha-

Singh, 1992; Lent, Lopez, & Bieschke, 1993; Lent, Lopez, Lopez, & Sheu, 2008). Although this 

set of studies suggest the validity of SCCT as an explanatory framework for understanding 

STEM interests and choices, they are largely limited by cross-sectional designs and single-

institution data (Lent et al., 2010). Based on a national longitudinal database, this study 

incorporates the key constructs of SCCT to build a conceptual model of STEM participation and 

capture the nature of the relationships between the theoretical variables over time.  

SCCT posits that the determination to produce a particular choice can be explained as a 

result of interests and self-reference beliefs. Based on prior studies (e.g., Adelman, 1999), high 

school math preparation has evolved as a particularly promising factor influencing choice of 

STEM fields of study. Therefore, this study theorizes that students’ math self-efficacy beliefs 

and high school math preparation, while influencing each other, both give rise to students’ intent 

to pursue STEM fields upon postsecondary entry, which is also influenced by the amount of 

academic exposure to math and science courses during high school.  
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SCCT also highlights the role of environmental support and barriers in determining student 

choices. In a postsecondary setting, students’ pursuit of STEM as an academic goal responds to 

contextual support and barriers—social, academic, or financial. In particular, because K-12 

assessments and the academic requirements of postsecondary institutions are often at odds 

(Goldrick-Rab, 2007), students transitioning into postsecondary education need to navigate a 

series of demands, such as the need for financial resources, academic integration into college, 

and various external demands. The outcomes of this process might present either barriers or 

support and thus impact academic choice behavior of STEM-aspiring students. A number of 

factors in this transition process that are particularly relevant for this study are discussed below.  

Student interaction with faculty and academic advisors positively influences numerous 

student outcomes (Astin, 1993; Chang, 2005; Lamport, 1993; Terenzini, Pascarella, & Blimling, 

1999). Given the focus of this study, such interactions may provide necessary support for 

students to clarify and confirm their choice of major field of study. For many students, 

remediation is a necessary part of the curriculum (Pascarella & Terenzini, 2005). However, 

research on the effect of enrolling in remedial courses has produced mixed results (Adelman, 

1999; Bahr, 2008; Bailey & Alfonso, 2005; Long, 2005). In examining the relationship between 

remediation and student choice of STEM, this study will provide targeted, context-based 

research evidence regarding the effectiveness of remediation in sustaining students’ academic 

aspirations. The receipt of financial aid also affects students’ academic choices (e.g., DesJardins, 

Ahlburg, & McCall, 2006; Ishitani & DesJardins, 2002), and the external demands that students 

may need to deal with, such as having dependent children and working long hours, may redirect 

them from pursuing challenging fields of study, such as math and science. These initial college 
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experiences at students’ first postsecondary institution are presumed to directly shape their 

decisions to pursue STEM fields of study.  

 

Research Questions 

The purpose of this study is to understand the direct and indirect influences of high school 

exposure to courses in math and science, math self-efficacy beliefs, math test scores, and initial 

postsecondary experiences on entrance into STEM fields of study in college. An a priori path 

analysis model based on relevant research literature and the SCCT is developed and tested in this 

study. Specifically, the following interlocking questions guide the design and analyses of this 

research:  

1. What are the relationships among high school exposure to math and science courses, math 

achievement, math self-efficacy beliefs, intent to pursue STEM upon entry into postsecondary 

education, and entrance into STEM fields of study?  

2. Taking into account the relationships described in question 1, how are students’ initial 

postsecondary education experiences, such as remediation, receipt of financial aid, academic 

interaction, perceived level of adequacy of high school preparation for college, and external 

demands related to choice of STEM fields?  

3. How do these relationships vary by gender, race/ethnicity, and socioeconomic status 

(SES)? 

 

 

 

 



9 
 

Methods 

Data Source and Sample 

Data for this study come from the Education Longitudinal Study of 2002 (ELS: 2002), 

which was designed to study the transition of young people from high school into postsecondary 

education and the workplace. ELS: 2002 started with a nationally representative cohort of high 

school sophomores. The sample was then augmented in the first follow-up study in 2004 to 

represent high school seniors. In 2006, roughly two years after high school, the second follow-up 

study collected data on access to postsecondary institutions, choices of enrollment and college 

major, and some other aspects of college experience. Given its focus on the transition from high 

school to postsecondary education, ELS: 2002 is an appropriate dataset for this study; to fully 

understand student learning, motivation, interest, and choice as related to STEM fields, it is 

necessary to follow the same individuals from high school into college. The longitudinal data 

from ELS: 2002 provide a thorough empirical description of student experiences relevant to 

STEM education in high school and the early years of college. This study focuses on the spring 

2004 high school seniors who participated in the second follow-up interview and who had 

enrolled in a postsecondary institution by 2006. Of approximately 14,000 members of the 2004 

senior cohort, about 12,500 (89.3%) responded to the second follow-up interview. For the 

purpose of this study, I retained an initial total of 6,304 (out of 12,500 eligible) students who had 

reported postsecondary attendance at a four-year institution by 2006. All analyses were weighted 

using the appropriate panel weight (F2F1WT). Therefore, results of this study can be generalized 

to the spring 2004 high school graduates who started their postsecondary education at a four-year 

institution within two years of high school graduation.  
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Measures 

Based on the theoretical model, the following variables are included in the study:  

The outcome variable of the study, entrance into a STEM field of study, is a dichotomous 

variable, recoded from the survey item that asks respondents’ field of study during the 2006 ELS 

second follow-up interview. The focal mediating variable is intent to pursue a STEM field, 

measured by whether the most likely postsecondary field of study students consider upon 

postsecondary entry is in the STEM disciplines.  

The independent variables include three exogenous variables at the high school level: (a) 

exposure to math and science courses, measured by the number of units in mathematics and 

science technologies that students take; (b) high school math achievement, measured by high 

school math standardized test scores; and (c) math self-efficacy beliefs, measured by five items—

each on a four-point Likert scale—that represent students’ self-efficacy beliefs in areas such as 

taking math tests, mastering math skills, and completing math assignments.  

Although these variables measured during high school offer some insight into student 

learning in math and science, they do not indicate fully how well such learning prepares students 

for college-level work. In an attempt to provide a more comprehensive picture that goes beyond 

course-taking and achievement, a latent variable is included that measures how students already 

enrolled in college believe that their high school math and science courses prepared them for 

college-level work. ELS’s second follow-up study contains this information and, because these 

data were collected during the first year of college, this latent variable of high school math and 

science preparation for college is depicted at the postsecondary level in the structural model.   

In addition, the following variables are used to represent postsecondary context of support 

and barriers: academic interaction, remediation, receipt of financial aid, and external demands. 
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Academic interaction is measured by the frequency of interacting with faculty about academic 

matters and the frequency of meeting with advisors about academic plans. This study also 

includes three dichotomous variables measuring remediation; that is, whether students took 

remedial courses to improve reading, writing, and math skills. ELS: 2002 specifies the financial 

aid status (loan, grant, and work-study) of students; thus, the receipt of financial aid is a 

dichotomous variable based on students’ first-year aid status. Representing external demands are 

one dichotomous variable measuring whether students had dependent children and a continuous 

variable measuring the number of hours students worked per week during the first two years of 

college. This study also includes enrollment intensity and graduate degree expectations as 

control variables. Figure 2 is a depiction of the structural equation modeling (SEM) diagram 

based on the theoretical model (Figure 1).  

 

[Insert Figure 2 about here.] 

 

Table 1 lists the names, descriptions, and ELS labels of all variables used in the study. In the 

table, each latent construct and its corresponding indicators also are specified. Each latent 

construct also is denoted by an asterisk sign (*) at the beginning of the variable name.  

  

[Insert Table 1 about here.] 

 

Analytical Approaches 

First, I computed descriptive statistics of the sample and disaggregated the data by 

background characteristics. These descriptive statistics provide a general profile of the ELS 2004 
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high school senior cohort’s participation in STEM fields of study two years after high school 

graduation and help identify any variation in experiences across socio-demographic variables.  

Following the descriptive analysis, I tested the proposed conceptual model using structural 

equation modeling (SEM) (Kaplan, 2009). The measurement part of SEM is to perform 

confirmatory factor analysis (CFA) based on the proposed measurement models. Four latent 

constructs were measured at this step: math self-efficacy, high school exposure to math and 

science, perceived adequacy of high school preparation for college, and academic interaction. 

The path structure in this study is postulated by two regression analyses in the model. The first 

equation investigates how students’ intent to major in STEM upon entering college was affected 

by their high school exposure to math and science courses, high school math achievement as 

measured by math standardized scores, and math self-efficacy beliefs. The second regression 

analysis examines how students’ decisions to enter into STEM fields of postsecondary study 

were affected by their intent to major in STEM fields, adequacy of high school math and science 

preparation for college, and postsecondary context of support and barriers (such as academic 

interaction, remediation experience, external demands, and receipt of financial aid). In addition, 

two other exogenous independent control variables— enrollment intensity and post-

baccalaureate educational expectations—were included in this second regression equation. 

Moreover, students’ high school math standardized scores are included in the second equation 

again because math ability might have a direct effect on students’ entrance into STEM fields. 

Although SEM traditionally is suited for analyzing continuous variables, recent software and 

methodological developments have extended the application of SEM into analysis of all types of 

variables—continuous, ordinal, or nominal—as present in this study. I conducted the analyses 

using Mplus 6.1, a statistical software package capable of SEM analysis that uses a mixture of 
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different types of variables (Kupek, 2006; Muthén & Muthén, 1998-2010). In addition, Mplus 

contains statistical tools that accommodate complex survey design features such as survey 

weights and the clustering nature of ELS: 2002. Another attractive feature of Mplus is its default 

procedure in handling missing data of dependent variables, which is based on the maximum 

likelihood estimation (Muthén & Muthén, 1998-2010).  

Following Byrne (1998), I relied on the following fit indices to assess overall model fit: chi-

square (χ2), comparative fit index (CFI), Tucker-Lewis Fit Index (TLI), and root-mean-square 

error of approximation (RMSEA).  

Testing for structural invariance across gender, race, and SES groups. As previously 

discussed, socio-demographic differences are of critical importance in STEM-related research 

(Crisp, Nora, & Taggart, 2009; Towers, 2008) and persistent gender and racial gaps in the STEM 

pipeline remain (Anderson & Kim, 2006; Clewell & Campbell, 2002; Dowd, Malcom, & 

Bensimon, 2009), thus warranting the need for STEM-related analyses to take such background 

differences into consideration. Therefore, after I conducted the SEM analysis based on the whole 

sample and obtained its overall fit, I resorted to multiple-group SEM analyses to examine 

whether the hypothesized model is equivalent across different gender, racial, and SES groups. 

Specifically, this part of the study drew upon three sets of multiple-group SEM analyses 

respectively based on gender (females and males), race (Whites, Asians, and underrepresented 

minorities), and SES (quartiles) and tested for structural weight invariance across subgroups 

within each of these three socio-demographic categories. Because this study focuses on the 

structural pattern of the model (i.e., the underlying mechanism affecting students’ entrance into 

STEM fields of study), the model invariance tests focused on the equivalence of structural 

parameters across different groups. To illustrate, in the gender-based multiple-group analysis, I 
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first fitted a baseline model—a multiple-group model with only factorial equality constraints 

across gender, where the structural weights (i.e., regression coefficients) were freely estimated 

across the male and female groups. I then estimated another multiple-group model with cross-

group constraints where all structural weights across males and females were constrained to be 

equal. Next, I conducted a structural invariance test based on the chi-square difference (Δχ2) test 

that compared the baseline model with the constrained-equal model. Through this test, if the chi-

square difference statistic does not reveal a significant difference between the models, then it can 

be concluded that the model has structural weight invariance across gender groups. However, if 

non-invariance is indicated by a significant chi-square difference, then structural weights (i.e., 

regression coefficients) are gradually constrained to be equal across gender groups to determine 

whether group differences can be attributable to any of the structural weights. If any constrained 

parameters (i.e., structural weights) are found to be gender-invariant as suggested by 

insignificant Δχ2 statistics, then they will be constrained, cumulatively, in subsequently more 

restrictive models. On the contrary, a significant Δχ2 statistic suggests that the given parameter is 

not equivalent across gender groups; therefore, it will be freely estimated in the subsequent 

models for invariance tests (Byrne, 2010). Race- and SES-based multiple-group analyses were 

carried out in the same fashion.   

 

Missing Data 

As inherent with survey research, some of the variables included in the study have missing 

data. In this study, I applied Mplus’ s full information Maximum Likelihood (FIML) to handle 

missing data in the variables that are treated as dependent by the software. Listwise deletion was 

used to deal with the missingness in the exogenous observed variables. Before performing 
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listwise deletion, the dataset that contains cases to be deleted was compared with the dataset that 

contains cases not subject to listwise deletion; it was observed that the distributions of variables 

in both are quite similar. As a result, 415 cases were removed from the analysis, resulting in the 

final analytic sample size of 5,889. 

 

Results 

Descriptive statistics are presented in Table 2 to provide a comprehensive picture of 

entrance into STEM fields based on student background characteristics. Overall model fit indices 

of the proposed model are examined. A discussion of the results from multiple-group analyses 

follows. This section concludes with a description of various direct and indirect effects of the 

independent variables.  

  

[Insert Table 2 about here.] 

 

Overall Model Fit 

Overall model fit indices based on the whole-sample SEM analysis are displayed in Table 3. 

Researchers generally hope that the null hypothesis (i.e., that the hypothesized model holds in 

the population), is not rejected in SEM. However, the chi-square test is sensitive to sample size. 

With a sample size greater than 400 cases, the chi-square value is almost always statistically 

significant (Kenny, 2011; Schumacker & Lomax, 2004). In this single sample SEM analysis, the 

chi-square value of the proposed model is equal to 1960.548, df = 163, p = 0.000. Due to the 

study’s large sample size, the chi-square test might erroneously reject the null hypothesis by 

indicating a near-zero p-value.  
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The Comparative Fit Index (CFI) is 0.964 and the Tucker-Lewis Index (TLI) is 0.957. Heck 

& Thomas (2000) asserted that CFI and TLI values above 0.90 indicate acceptable model fit, 

while a higher cutoff standard at 0.95 has been suggested by the other researchers (Newsom, 

2010; Schreiber, Stage, King, Nora, & Barlow, 2006 ). In this whole-sample SEM analysis, both 

CFI and TLI indicate that the model fit is adequate based on the more stringent cutoff standard.  

The Root Mean Square Error of Approximation (RMSEA) proposed by Steiger and Lind 

(1980) is yet another measure of model fit. Respectively, 0.01, 0.05, and 0.08 suggest excellent, 

good, and mediocre fit (MacCallum, Browne, & Sugawara, 1996; Newsom, 2010). In this study, 

the proposed model has a RMSEA value of 0.042, which suggests that the model is a good fit. 

 

[Insert Table 3 about here.]  

 

Results of Multiple-Group Invariance Tests 

Multiple-group SEM analyses were conducted for racial, gender, and SES groupings. Three 

sets of statistics and model fit indices were derived from this series of analyses and are presented 

in Table 4. For example, in the race-based multiple-group analysis, the hypothesized model was 

initially fitted to the White, Asian, and under-represented minority (URM) samples separately. 

The fit statistics for the White-only model are χ2(163) = 1436.92, CFI = 0.961, TLI = 0.953, 

RMSEA = 0.045 (line 1of Table 4); Asian’s fit statistics are χ2(163) = 330.36, CFI = 0.967, TLI 

= 0.960, RMSEA = 0.038 (line 2); and URM’s fit statistics are χ2(163) = 579.91, CFI = 0.958, 

TLI = 0.949, RMSEA = 0.043 (line 3). The fit indices suggest that the hypothesized model fits 

each racial group adequately. Thus, all racial groups were combined together and simultaneously 

fitted to the data to become the multiple-group baseline model.  
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The racial multiple-group baseline model also fits the data well: χ2(527) = 2286.66, CFI = 

0.961; TLI = 0.957, RMSEA = 0.041 (line 4). In the next step, all of the 15 structural weights 

(i.e., regression coefficients) were constrained equally across racial groups to examine structural 

weight invariance across racial groups. The result of the corrected chi-square difference test is 

statistically significant (p < 0.05), which suggests that one or more of the parameters are non-

invariant across racial groups (line 5). Thus, instead of constraining these 15 parameters all at 

once, parameters were constrained one by one to identify the source of non-invariance found in 

the previous step. When the regression coefficient for exposure to math and science courses on 

intent to pursue STEM was constrained equal across racial groups, the result of the corrected chi-

square difference test was again significant, suggesting that exposure to math and science 

courses is one of the sources of structural non-invariance across racial groups (line 6). Similarly, 

non-invariance was found when the regression coefficient for math standardized score on intent 

to pursue STEM was constrained equally across racial groups (line 7). I further identified 

precisely where the non-invariance of these two structural weights lies between specific pairings 

of racial groups by performing partial constraints (i.e., selecting only two of the three racial 

groups to be constrained equal at a time). I found that non-invariance of these two structural 

weights exists for all three pairs of comparison: White and Asian, Asian and URM, and URM 

and White. Therefore, I kept both structural weights freely estimated across all racial groups in 

the model. Subsequent invariance tests showed that there was no structural non-invariance 

caused by the rest of the 13 structural weights (line 8). 

 

[Insert Table 4 about here.] 
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The middle and lower sections of Table 4 display the model fit statistics and multiple-group 

structural invariance test results for gender and SES groupings, respectively. No structural non-

invariance was found in the multiple-group analyses based on gender and SES, which indicates 

that the hypothesized model can be operated across different subgroups within gender or SES. 

 

Final SEM Model 

Through these detailed analyses, it became clear that a multiple-group model based on race, 

where the paths from exposure to math and science courses and math standardized score to 

intent to major in STEM were freely estimated for all racial groups while all other structural 

weights are constrained equal, is the most reasonable and viable model. This final model fit the 

data, χ2 (553) = 2250.66, CFI = 0.963, TLI = 0.960, RMSEA = 0.040, and did not differ in fit 

than the fully unconstrained model, corrected Δχ2 (26) =26.33, p = 0.445. Table 5 displays the 

unstandardized and standardized estimates from this final multiple-group model based on race.  

 

[Insert Table 5 about here.] 

 

Figure 3 presents the final model with the significant paths highlighted, and the coefficient 

estimates also are denoted along with the paths. 

 

[Insert Figure 3 about here.] 
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Discussion 

The following focuses on a discussion of the results from the final SEM model, beginning 

first by addressing the questions this study pursued:  

1. What are the relationships among high school exposure to math and science courses, 

math achievement, math self-efficacy beliefs, intent to major in STEM, and entrance into STEM 

fields of postsecondary study?  

Intent to pursue STEM, the mediating variable in the proposed model, was significantly and 

positively influenced by math self-efficacy beliefs, the effect of which remained the same across 

gender, racial/ethnic, and SES groups. The effect of high school exposure to math and science 

courses on intent to major in STEM was statistically significant and positive among White and 

Asian students but was null among underrepresented minority students. High school math 

achievement positively influenced intent to pursue STEM fields, and this effect, although 

significant across all three racial groups, was largest among White students and approximately 

the same for Asian students and underrepresented minorities. Through this mediating variable, 

all three high school variables also indirectly and positively affected actual choice of STEM 

fields, except that exposure to math and science did not show any significant indirect effect 

among underrepresented minorities. In addition, math achievement also showed a significant 

direct effect on entrance into STEM fields of study.  

2. Taking into account the high school variables, how are students’ initial postsecondary 

education experiences related to choice of STEM fields? 

Intent to pursue STEM and several postsecondary latent and observed variables showed 

direct effects on entrance into STEM. Specifically, entrance into STEM fields of study was 

associated positively with intent to major in STEM, academic interaction, perceived adequacy of 
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high school preparation for college, receiving financial aid, and expecting to earn a graduate 

degree. External demands, such as being a parent and number of work hours, did not contribute 

any significant effect in presence of other postsecondary variables. Receiving remediation and 

being enrolled full-time did not show any influence on STEM entrance either. None of these 

effects differ significantly across gender, racial, and SES groups.   

3. How do the modeled effects vary based on gender, race, and SES?  

The potentially varying effects of the modeled factors were examined through conducting 

multiple-group SEM analyses based on gender, race, and SES. These analyses indicate that the 

proposed theoretical model generally held well and was stable across various gender, racial, and 

SES groups. Significant differences in structural weights were found in the multiple-group model 

based on race, where the effects of math achievement and high school exposure to math and 

science courses on intent to major in STEM fields differed significantly among all racial groups. 

Overall, the influences of these two variables were the strongest among White students.  

A closer examination of these results reveals a number of important findings worthy of 

further discussion. First, high school preparation in terms of math and science has a lasting, 

persistent effect on student academic choices as related to STEM by playing a critical role in 

developing student interest in pursuing a postsecondary STEM field of study, thus cultivating the 

intent to pursue STEM, and by directly influencing entrance into STEM fields. Math and science 

learning in K-12 schooling has been central to the research and discussion on broadening the 

STEM pipeline. In particular, with a great variability, course selection and completion during 

high school are essential in developing student predispositions towards a STEM major choice in 

college (Blickenstaff, 2005).  
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The influence of high school preparation as related to math and science, however, is 

multifaceted. Many prior studies solely focused on math achievement when examining the 

influence of high school experience on student interest and entrance into STEM fields (Crisp, 

Nora, & Taggart, 2009; Porter & Umbach, 2006; Staniec, 2004). This study, however, shows that 

the effect of student exposure to math and science courses is as salient as that of math 

achievement, which was once deemed the single best predictor of future STEM choices. This 

finding implies that, to boost high school students’ interest in pursuing STEM fields of study, an 

earlier introduction and exposure to math- and science- related courses could be a most effective 

method and that students’ interest in pursuing STEM could be an evoked response to direct 

exposure to these courses. On the other hand, math achievement still indicates a persistent effect 

on student interest and subsequent enrollment in STEM majors; this warrants continued policy 

focus on improving math achievement of students. When it comes to structuring and engaging 

students in math and science courses, particular attention should be given to college preparedness. 

As clearly indicated in this study, students who perceive their high school math and science 

courses to have adequately prepared them for college work are likely to enter into STEM fields 

of study. In light of these findings, a stronger alignment between high school offerings and 

academic expectations at the college level represents a promising step toward promoting greater 

student interest and entrance into STEM fields of postsecondary study.  

Second, motivation matters in STEM choices. This study examined three motivational 

attributes and their link to entrance into STEM fields: (a) math self-efficacy beliefs, (b) intent to 

pursue STEM fields of study, and (c) aspiration to earn a graduate degree. The results show that 

math self-efficacy beliefs play a significant and positive role in shaping intent to pursue STEM 

and that, through influencing intent, they have a lasting indirect effect on actual choice of STEM 
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majors. Similar to previous research that examines the link between math self-efficacy and 

STEM choice (e.g., Scott & Mallinckrodt, 2005), this study demonstrates that students with 

greater math self-efficacy beliefs are more likely to intend to major in STEM fields upon college 

entrance. While this finding supports the argument for promoting positive math self-efficacy 

beliefs among all students, it should be noted that math self-efficacy often is discussed in relation 

to gender, with a particular focus on the "confidence gap" (M. Sadker & D. Sadker, 1994). That 

is, male students are more math self-efficacious than female students despite comparable 

achievement (Eccles, 1994; Pajares, 2005; Watt, 2006), although more recent research (e.g., 

Britner & Pajares, 2006; Chen & Zimmerman, 2007; Kay & Knaack, 2008; Kenney-Benson, 

Pomerantz, Ryan, & Patrick, 2006) indicates that this gap may be closing. Multiple-group 

analysis in this study shows that there is no gender difference in terms of how math self-efficacy 

works to influence student intent to major in STEM fields of study; this highlights the 

importance of further addressing the gender bias in STEM discussion (Clewell & Campbell, 

2002), which may play a role in the genderized socialization of female students and have 

additional adverse effects on their math self-efficacy beliefs.  

In addition to self-efficacy, other key motivational factors in SCCT that influence choice 

actions include outcome expectations and interests (Lent, et al., 2010). In this study, intent to 

major in STEM fields of study was used as a proxy for outcome expectations and interests and 

shows a positive and significant effect on the choice action of interest: entrance into STEM fields. 

This result aligns well with SCCT, which stipulates that an individual’s intention to engage in a 

certain activity (in this case choosing a major in STEM fields) helps organize, guide, and sustain 

the individual’s efforts over a period of time without external influence (eventually entering a 

STEM field of study). This study also found that expecting to earn a graduate degree is 
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positively associated with STEM entrance. Perhaps those who are graduate school aspirants tend 

to be a more select and motivated group who are successful in establishing a stable, long-term 

academic plan and who are better prepared to take on challenging fields of study such as STEM.  

Third, taking student intent into account, the first year of college is important for students 

who pursue STEM fields of study, especially when contextual support in the form of 

socialization with faculty and academic advisors and receipt of financial aid is present. For all 

students, interaction with faculty and academic advisors seems to encourage entrance into STEM 

fields of study. These interactions may help students better integrate themselves into the college 

environment and also make them better align their academic aspirations with actual choices. 

From an advising perspective, helping current and potential STEM aspirants declare a STEM 

major early in their college careers is critical to minimizing additional time, funds, and 

opportunity costs spent in pursuing a degree (Frehill, 1997). As discussed previously, the 

socialization process may help reinforce one’s academic and career choices. Also, in the context 

of SCCT, such interactions serve as the contextual support that helps individuals persist in 

alignment with their goals. The positive influence of financial aid suggests that financial support 

also can provide the much needed support for students to pursue STEM fields of study. Given 

that students pursing STEM disciplines tend to spend more time studying than students in other 

fields (Arum & Roksa, 2011; Brint, Cantwell, & Saxena, 2011), receiving financial aid may help 

relax financial constraints and allow them to allocate enough time and energy to study and 

engage in greater interaction with faculty and advisors, thus meeting the academic challenges 

associated with majoring in STEM fields. In fact, a recent study by Kienzl and Trent (2009) 

found that receiving financial aid helped underrepresented students enter high-cost STEM fields 

at a large public research university. Results from this study based on national data echoes 



24 
 

Kienzl’s and Trent’s finding and further reveals that the positive effect of financial aid applies 

across gender, racial, and SES groups. It also is worth mentioning that with academic interaction 

and financial aid taken into consideration, variables representing postsecondary contextual 

barriers, such as remediation and external demands, did not seem to have any statistically 

significant impact on STEM entrance.  

Fourth, for recent high school graduates, racial backgrounds still largely impact the way in 

which high school math and science learning is linked to STEM aspirations, with 

underrepresented minorities such as Blacks and Hispanics experiencing the least gain in their 

intent to purse a STEM field through math achievement and coursework in math and science. 

This study suggests that the effects of math achievement and high school exposure to math and 

science courses on STEM aspirations are heterogeneous, accruing more to White students and 

last to underrepresented minorities. The identification of these heterogeneous effects indicates 

that the well-documented racial disadvantage in STEM participation cannot simply be attributed 

to underrepresented minorities’ low levels of academic preparation in high school math and 

science or resolved by increasing their achievement and exposure to math and science. Rather, 

more research is needed to understand how math and science learning during high school can 

better serve underrepresented minority students and what additional factors contribute to these 

students’ STEM-related aspirations and choices. The challenges associated with broadening the 

participation of minorities in STEM fields should be addressed while keeping in mind the 

possible heterogeneous impacts of various policies and practices so as to more effectively target 

underrepresented minorities in growing the STEM pipeline.  

Last but not least, the process leading to entrance into STEM fields of study is complex; 

numerous influences—individual, psychological, and social—act together to shape, develop, and 
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sustain one’s interest and eventually turn it into an actual choice. This study set out to 

disentangle these influences and their effects on STEM choice by adopting a K-16 perspective 

that draws upon the integration of SCCT and relevant literature on STEM education. Although 

this study does not account for all of this complexity, its findings suggest that SCCT is a viable 

framework for understanding STEM choice behaviors, especially when high school STEM-

related learning experience is added to the model. Consistent with SCCT, STEM participation 

for all students largely is dependent on their intrinsic motivational attributes, such as math self-

efficacy beliefs and interest in entering STEM. These observations, along with the finding that 

aspiring to earn a graduate degree turns out to influence students’ STEM choice, suggests that 

students’ pathways to STEM can be substantially explained by their overall educational 

motivation and aspirations. Students also respond positively to postsecondary support, such as 

academic interaction and financial aid, when making choices in regard to STEM as a major field 

of study. In addition, by utilizing a multiple-group SEM analysis to gauge impact heterogeneity, 

this study illuminates the differential processes leading up to entrance into STEM fields among 

racial groups. A general theme that emerges from this study is that the race-based inequitable 

participation in STEM fields of study may be partially explained by White, Asian, and 

underrepresented minority students’ differential responses to their high school learning 

experiences in math and science.  

 

Limitations of the Study and Directions for Future Research 

This study’s findings should be considered in conjunction with several important limitations. 

First, although the study relies on a nationally representative sample, the use of an extant dataset 

poses constraints in terms of what can be included to operationalize the theoretical model. For 
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example, self-efficacy beliefs are central to SCCT, which serves as the guiding theoretical 

framework for this study. While ELS: 2002 contains survey items that measure math self-

efficacy adequately, a more comprehensive measure of STEM-specific self-efficacy would be 

more appropriate given the study’s outcome variable. ELS does not include data for developing 

such a measure, thus forcing this study to rely on math self-efficacy as a proxy for STEM self-

efficacy, which limits the robustness of the data in support of the theory. Second, also due to the 

lack of relevant data, this study is not able to account for students’ perceptions and attitudes 

toward STEM fields, how these perceptions and attitudes are shaped by students’ socialization, 

or how they influence students’ motivation to participate in STEM fields (Felder, Felder, 

Mauney, Hamrin, & Dietz, 1995).  

Another limitation concerns the lack of causal inference, given the use of observational data 

and SEM. Although SEM goes beyond the traditional regression analysis in that it accounts for 

the temporal, complex relationships among latent and observed variables, it is still an exploration 

of various correlations. While plausible explanations for the findings are discussed based on 

theory and prior research, none of the relationships described in this article should be interpreted 

as causal.  

In addition, this study focuses on choosing a major within STEM fields roughly within two 

years of college. Some students still may be exploring their major fields of interest during this 

time frame, and others might switch into STEM fields later on; these dynamics were not 

explored given the data available for the study. Because ELS: 2002 only followed students two 

years after high school graduation, it is impossible to explore the long-term effects of the high 

school and postsecondary variables on students’ entire progress through the STEM pipeline.  
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This study points to several directions for future research. Although studies on STEM-

related issues have proliferated in the past decade, disentangling the reasons for STEM 

participation remains a complex challenge, especially when determining whether the factors are 

dependent on socio-demographic backgrounds and/or within the control of the educator. 

Integrating variables at the high school and college levels, this study set out to account for a 

longitudinal process of STEM choice and tackled the effects of heterogeneity based on gender, 

race, and SES. However, a number of questions remain to be answered in future research. First, 

the finding surrounding math self-efficacy needs further investigation to understand more 

completely the mechanism through which it works in support of interest in STEM fields and 

future STEM choice, especially among female students. How does math self-efficacy or, better 

yet, STEM self-efficacy, interact with various socialization sources and social perceptions 

regarding the gender role in career- and major-related choices to affect students’ actual STEM 

choices? Which one of the sources of self-efficacy—mastery experience, vicarious experience, 

social persuasions, or physiological factors—is the most theoretically and practically viable way 

to help promote STEM-related self-efficacy? 

In addition, given the persistent, enduring effect of high school exposure to math and 

science courses, as well as math achievement, finding the best possible way to teach those 

courses, especially accounting for racial differences in the ways in which these effects are 

transmitted, will continue to dominate the central stage of STEM discussion. Rigorously 

designed experimental or quasi-experimental research may represent the best approach for 

scaling up promising interventions. Equally important, the first year in college can be critical, 

and as evidenced in this study, a number of postsecondary variables are related to entrance into 

STEM fields of study. Of particular note are the positive effects of both receiving financial aid 
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and academic interaction on STEM choice. These relationships need to be further studied—

ideally through original, targeted data collection—to understand how they affect STEM entrance. 

Such nuanced understanding may aid in the development of policy interventions that truly can 

make a difference.  

 

Conclusion 

Given the continued national attention to promoting seamless movement through the STEM 

pipeline among students of diverse backgrounds, research along this line will continue to flourish. 

It has been established that college majors create differential opportunities for social mobility 

and that college graduates from STEM fields attain higher occupational earnings and social 

status positions associated with these professions compared to many other fields (Russell & 

Atwater, 2005). Therefore, underrepresentation of women and minorities may become a social 

justice issue. The differential participation rates in STEM fields between underrepresented 

students and other groups are particularly detrimental because they affect individuals’ long-term 

social mobility (Carter, 2006). Continued attention will be given to issues of representation for 

women and minorities throughout the STEM pipeline. In particular, a comprehensive knowledge 

of the barriers or facilitators to entering these important fields will be helpful in designing 

interventions that can address equitable participation in STEM fields. Following the holistic view 

of the issue of inequity in STEM participation, this study examined the high school learning and 

postsecondary context of support and barriers and their potentially heterogeneous influences on 

STEM entrance. Results of this study not only validate a viable conceptual model for researching 

STEM entrance but also illuminate the racial differences in how high school learning exerts its 

impact on student intent to major in STEM fields of study. Educational policy and interventions 
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targeted at developing STEM-related perceptions, attitudes, and aspirations among 

underrepresented minority students will benefit from a deeper understanding of potentially 

heterogeneous effects of variable educational experiences.   
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Table 1 
 
List of Variables in the Study  
 
Variable Name Description ELS Label 
Dependent Variable  

Entrance into STEM fields of 
study 

Respondent’s 2006 major field of study is in STEM fields. 
1=yes, 0=no 

Recoded from 
F2MAJOR2 
F2MAJOR4 

Mediating Variable  

Intent to major in a STEM field 
Field of study respondent would most likely pursue when 
beginning at the first postsecondary institution is in STEM 
fields. 1=yes, 0=no 

Recoded from 
F2B15  

Independent Variable  
High school math preparation  High school math standardized score  F1TXMSTD  

*Math self-efficacy beliefs 

-Can do excellent job on math tests F1S18A 
-Can understand difficult math texts F1S18B 
-Can understand difficult math class F1S18C 
-Can do excellent job on math assignments F1S18D 
-Can master math class skills 
Items based on four-point Likert scales with 4 indicating 
"almost always" and 1 indicating "almost never" 

F1S18E 

*High school exposure to math 
and science courses 

 
-Units in mathematics from high school transcript F1R27_C 
-Units in science from high school transcript F1R41_C 

Postsecondary context of support and barriers 

*Academic interaction 

 
-Talk with faculty about academic matters outside of class F2B18A 
-Meet with advisor about academic plans 
Items based on three-point scales with 3 indicating "often" 
and 1 indicating "never" 

F2B18B 

*Preparation for college 

 
-High school math prepared for college F2B17A 
-High school science prepared for college 
Items based on three-point scales with 3 indicating "a great 
deal" and 1 indicating "not at all" 

F2B17B 

Remediation 
-Took remedial reading, 1=yes, 0=no F2B16A 
-Took remedial writing, 1=yes, 0=no F2B16B 
-Took remedial math,1=yes, 0=no F2B16C 

External demands 
-Whether has biological children, 1=yes, 0=no F2D03 

-Hours worked weekly 
F2C26R 
F2C31R 

Financial aid receipt Offered financial aid 1st year at college, 1=yes, 0=no F2PS1AID  
Demographic and control variables  

Race Underrepresented minorities a, Asian American, and White 
Recoded from 
F1RACE 

SES Socioeconomic status quartile F1SES1QR 

Enrollment intensity 1=full-time, 0=part-time 
Recoded from  
F2B20A to H 

Expecting to earn a graduate 
degree 

Whether respondent expected to earn a graduate degree, 
1=yes, 0=no 

Recoded from 
F2STEXP 

Note. Latent variables are represented by "*." 
a Underrepresented minorities include African Americans, Hispanics, Indian Americans, and multiple-
racial students.  



42 
 

Table 2 
 
Descriptive Statistics of Demographic Characteristics of the Sample, Unweighted and Weighted 
 

Total N 
Expressed intent  

to major in STEM fields (2004) 
Entered into STEM  

fields of study (2006) 

Unwgted Wgted Unwgted Wgted Unwgted Wgted 
N (%) N (%) N (%) N (%) 

Gender 

Female 3,436 708,844 374 (10.9%) 92,625 (10.9%) 352 (10.2%) 87,318 (10.3%) 

Male 2,868 851,202 841 (29.3%) 210,236 (29.7%) 618 (21.5%) 153,355 (21.6%) 

Race/Ethnicity 

American Indian 80 19,170 11 (13.8%) 3,601 (18.8%) 9 (11.2%) 2,968 (15.5%) 

Black 855 204,866 148 (17.3%) 33,978 (18.9%) 124 (14.5%) 29,024 (14.2%) 

Hispanic 959 266,270 166 (17.3%) 46,979 (17.6%) 139 (14.5%) 37,552 (14.1%) 

Multi-racial 321 84,243 71 (22.1%) 17,405 (20.7%) 51 (15.9%) 11,626 (13.8%) 

Asian 826 214,049 156 (18.9%) 40,306 (18.8%) 113 (13.7%) 30,328 (14.2%) 

White 3,263 788,765 663 (20.3%) 160,592 (20.4%) 534 (16.4%) 129,174 (16.4%) 

SES 

Lowest quartile 703 173,826 156 (22.2%) 37,246 (21.4%) 87 (12.4%) 20,149 (11.6%) 

Second quartile 1,051 268,578 183 (17.4%) 47,942 (17.9%) 137 (13.0%) 34,611 (12.9%) 

Third quartile 1,623 398,640 273 (16.8%) 69,080 (17.3%) 230 (14.2%) 56,242 (14.1%) 

Highest quartile 2,927 719,001 603 (20.6%) 148,594 (20.7%) 516 (17.6%) 129,671 (18.0%) 
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Table 3 
 
Model Fit Indices of the Single Sample 
 

Fit Statistics  

Chi-Square Test of Model Fit 
    Value 1960.548 
    Degrees of Freedom  163 
    P-value 0.000 

RMSEA (Root Mean Square Error of Approximation) 
    Estimate 0.043 
    90 Percent C.I. 0.042,  0.045 
    Probability RMSEA <= 0.05 1.000 

CFI/TLI 
    CFI 0.964 
    TLI 0.957 
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Table 4 
 
Racial, Gender, and SES Multiple-Group Structural Invariance Tests  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 *** p< 0.001,   ** p< 0.01,   * p< 0.05

Model Description χ2 df 

Corrected
Δχ2 

Non-
Invariance 
(p<0.05) CFI TLI RMSEA 

Racial Groups 
1 White n = 3812 1436.92 163 -- -- 0.961 0.953 0.045 
2 Asian n = 701 330.36 163 -- -- 0.967 0.960 0.038 
3 Underrepresented Minorities n = 1376 579.91 163 -- -- 0.958 0.949 0.043 
4 Baseline (factorial constrained) 2286.66 527 -- -- 0.961 0.957 0.041 
5 All structural wgt. constrained 15 coeff. 2288.61 557 78.14*** Yes  0.962 0.960 0.040 
6 Only EXP constrained   1 coeff. 2305.67 529 27.75*** Yes  0.961 0.957 0.041 
7 Only MathSco constrained   1 coeff. 2301.87 529 26.36*** Yes  0.961 0.957 0.041 
8 All other 13 constrained  13 coeff. 2250.66 553  26.33 No  0.963 0.960 0.040 

Gender Groups 
9 Male n = 2675 1062.48 163 -- -- 0.962 0.954 0.045 

10 Female n = 3214 946.90 163 -- -- 0.967 0.960 0.039 
11 Baseline (factorial constrained) 2039.14 345 -- -- 0.964 0.959 0.041 
12 All structural wgt. constrained 15 coeff. 2011.94 360 20.04 No  0.965 0.962 0.039 

SES Groups 
13 SES 1st Quartile n = 654 290.42 163 -- -- 0.966 0.96 0.035 
14 SES 2nd Quartile n = 958 462.91 163 -- -- 0.963 0.955 0.044 
15 SES 3rd Quartile n = 1518 572.69 163 -- -- 0.966 0.96 0.041 
16 SES 4th Quartile n = 2759 1061.54 163 -- -- 0.959 0.951 0.045 
17 Baseline (factorial constrained) 2438.79 709 -- -- 0.962 0.959 0.041 
18 All structural wgt. constrained 15 coeff. 2430.33 754 54.72 No  0.964 0.962 0.039 
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Table 5 
 
Unstandardized and Standardized Estimates of Direct and Indirect Effects in the Racial Multiple-Group Model 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

*** p< 0.001,   ** p< 0.01,   * p< 0.05,  † p< 0.10 
(=) represents that the estimate is constrained equal across groups. 

 White Asian Under-Represented Minorities 

Direct Effect Est. SE Std est. Est. SE Std est. Est. SE Std est. 

INTENT       ON          

    EFF  0.077*** 0.019 0.135 (=) (=) 0.131 (=) (=) 0.127 

    EXP  1.120*** 0.175 0.436 0.974*** 0.237 0.456 0.093 0.114 0.045 

    MATHSCO  0.059*** 0.005 0.059 0.026*** 0.008 0.026 0.027*** 0.006 0.027 
STEM           ON      

    ACA  0.162* 0.068 0.148 (=) (=) 0.176 (=) (=) 0.158 

    PRE  0.165*** 0.052 0.179 (=) (=) 0.308 (=) (=) 0.168 

    INTENT   1.123*** 0.069  1.123 (=) (=) (=) (=) (=) (=) 
    MATHSCO  0.018*** 0.005  0.018 (=) (=) (=) (=) (=) (=) 
    REMRDNG  0.005 0.159  0.005 (=) (=) (=) (=) (=) (=) 
    REMWRTG  -0.161 0.146 -0.161 (=) (=) (=) (=) (=) (=) 
    REMMATH   0.136 0.136  0.136 (=) (=) (=) (=) (=) (=) 
    AID   0.242** 0.095  0.242 (=) (=) (=) (=) (=) (=) 
    FULLTIME -0.143 0.262 -0.143 (=) (=) (=) (=) (=) (=) 
    GRADEXP   0.293** 0.093  0.293 (=) (=) (=) (=) (=) (=) 
    CHILD -0.318 0.155 -0.318 (=) (=) (=) (=) (=) (=) 
    WORKHOUR -0.001 0.006 -0.001 (=) (=) (=) (=) (=) (=) 

Indirect Effect    

EFF→INTENT→STEM 0.086*** 0.022 0.152 (=) (=) 0.147 (=) (=) 0.143 

EXP→INTENT→STEM 1.258 *** 0.197 0.490 1.095*** 0.269 0.512 0.104 0.128 0.051 

MATHSCO→INTENT→STEM 0.066 *** 0.007 0.066 0.029*** 0.009 0.029 0.031*** 0.007 0.031 
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Figure 1. Theoretical model for the study.  
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Figure 2. SEM model.  
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Figure 3. Final SEM results.  
 
W-White, A-Asian, U-Underrepresented minorities 
(=) indicates that the estimate is constrained equal across groups. 
*** p< 0.001,   ** p< 0.01,   * p< 0.05 
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